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1 Preliminaries

We start with some basic definitions and two useful theorems in the study of convexity. In what follows,
we will restrict ourselves to Rn, n ∈ N, the n-dimensional Euclidean space. The space is equipped with the
Euclidean norm: ∥x∥ =

√∑n
i=1 x

2
i , where x = [x1, . . . , xn]

⊺ ∈ Rn is any vector. A few fundamental objects
of the space Rn are:

1. (Unit) Ball: Bn := {x ∈ Rn : ∥x∥ ≤ 1}

2. (Unit) Sphere: Sn−1 := {x ∈ Rn : ∥x∥ = 1}

3. Hyperplane: Given a vector v ∈ Rn and a scalar t ∈ R, hyperplane is given by H := {x ∈ Rn : ⟨x, v⟩ =
t}

4. Half-space: For a hyperplane defined by v ∈ Rn and t ∈ R, there are two half-spaces associated with
it: H+ := {x ∈ Rn : ⟨x, v⟩ ≥ t} and H− := {x ∈ Rn : ⟨x, v⟩ ≤ t}.

Remark 1.1. We note that the sphere and the hyperplane are (n − 1)-dimensional objects embedded in
n-dimension. This is because the equality allows for only n− 1 degrees of freedom.

Now, let us recall that a set S ⊆ Rn is called convex if for any x, y ∈ S, we have λx+(1−λ)x ∈ S, where
λ ∈ [0, 1]. An example of a convex set is the ball Bn itself. Similarly, a hyperplane as well as half-spaces
are convex. However, the sphere Sn−1 is not convex. An extremely useful concept in the study of convex
geometry is the convex hull. The convex hull of a set S ⊆ Rn, denoted by conv(S) is the “smallest” convex
set that contains S. Formally, conv(S) = ∩{A : A convex and A ⊇ S}. Sometimes, it is more useful to

write the alternate algebraic definition of convex hull: conv(S) = {
∑k

i=1 λiai : k ∈ N, ∀ i ∈ [k], ai ∈ S, λi ∈
[0, 1] and

∑k
i=1 λi = 1}. The primary object of our study will be the convex body which is defined as follows:

Definition 1.1 (Convex Body). A convex body is compact convex set with non-empty interior.

Let us unpack the definition. A compact set in Rn is a set that is both closed and bounded1. Closed
means that the limit point of a convergent sequence in the set is also contained in the set. Intuitively, it means
that the set also includes the boundary, e.g. [0, 1] is closed but (0, 1) is not. Bounded means that the set is
contained in a ball of radius R > 0, for some finite R, i.e., the set is contained in RBn := {x ∈ Rn : ∥x∥ ≤ R}.
Next, we give some more definitions that will be useful in developing the later results:

1. Symmetric Convex Body: A convex body K ⊂ Rn such that if x ∈ K then −x ∈ K.

2. Dilation of a convex body K: αK := {αx : x ∈ K}, α ∈ R.

3. Translation of a convex body K: b+K := {b+ x : x ∈ K}, b ∈ Rn.

4. Linear Transformation of a convex body K: TK := {Tx : x ∈ K}, K ∈ Rn×n, T is invertible.

5. Ellipsoid: E = b + TBn = {b + x ∈ Rn : ⟨x, T−2x⟩ ≤ 1}, T is positive definite and b ∈ Rn. We call b
the center of the ellipsoid.

From the definition of a symmetric convex body, it is clear that 0 ∈ K if K is a symmetric convex body.
Lastly, an ellipsoid is defined as a linear transformation of the unit ball followed by a translation.

Now, we state two fundamental results of convex geometry. The proofs of these theorems can be found
in any standard references on convex analysis [Bertsekas et al., 2003, Rockafellar, 1970].

1Heine-Borel theorem shows this is a iff criterion in Rn
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Figure 1: The blue hyperplane separates the two sets shown by shaded regions. Such a hyperplane need not be
unique.

Theorem 1.1 (Carathéodory’s Theorem). Let A ⊂ Rn and x ∈ conv(A) ⊂ Rn be any point in the convex
hull of A. Then, x can be written as a convex combination of at most n+ 1 points in A. Specifically, there
exists λi ≥ 0, ai ∈ A, 1 ≤ i ≤ n+ 1,

∑n+1
i=1 λi = 1, such that

x =

n+1∑
i=1

λiai

A particularly useful corollary of Carathéodory’s theorem is when the set A is a finite collection of points,
i.e., A = {a1, . . . , am}. Then, the theorem states that any point in the convex hull of A can be represented
as a convex sum of at most n + 1 points in A. The theorem is often used to prove the existence of small
sized solutions to problems.

Next, we present another fundamental theorem of convex analysis.

Theorem 1.2 (Separating Hyperplane Theorem). Let A and B be two disjoint non-empty convex subsets
of Rn. Then there exists a hyperplane given by vector v ̸= 0 and real c ∈ R, such that,

⟨x, v⟩ ≤ c ≤ ⟨y, v⟩, ∀ x ∈ A, y ∈ B

In the next section, we present a fundamental result of convex geometry called John’s theorem. The
theorem characterizes the geometry of convex bodies using ellipsoids that are contained in them. In section 3,
we will see how studying this problem gives us useful results in designing small sized coresets.

2 Maximum Volume Ellipsoid

In Section 1, we have seen the definition of a convex body and an ellipsoid. The volume of a convex body
K is the n-dimensional Lebesgue measure associated with the set K. The Lebesgue measure in define via
intervals: the measure of a set S = [a1, b1] × [a2, b2] × . . . × [an, bn] is given by V ol(S) =

∏n
i=1(bi − ai).

Further, by writing any convex body as a (countable) union of sets of like S (called box sets), we can define
the volume of the convex body. Particularly, for an ellipsoid E = b + TBn, where T is a positive definite
(p.d.) matrix and b ∈ Rn, V ol(E) = det(T )V ol(Bn).

Lemma 2.1. Given a convex body K, the maximum volume ellipsoid contained in K exists and is unique.

Proof. Existence: First we argue the existence of such an ellipsoid. We define F := {(b, T ) : b ∈
Rn, T is p.d. ∈ Rn×n s.t. b + TBn ⊆ K}. The set F is just the set of parameters that define the ellip-
soids. The volume of the ellipsoids defined by elements of F can be thought of as the map (b, T ) 7→ det(T ),
which is a continuous map. Therefore, if we can show that F is compact, then we have by Extreme Value
Theorem [Rudin et al., 1964, Theorem 4.16], that there exists a (b∗, T ∗) ∈ F such that the corresponding
ellipsoid is of maximum volume.
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Since the convex body K is bounded (by definition), there exists R > 0 such that K ⊆ RBn. Hence,
for all (b, T ), b + TBn ⊆ RBn. Particularly, b ∈ RBn, hence ∥b∥ ≤ R. Also, for any x ∈ Bn, ∥Tx∥ =
∥Tx + b − b∥ ≤ ∥Tx + b∥ + ∥b∥ ≤ 2R. Thus, ∥T∥op ≤ 2R. Hence, both the set of feasible b and feasible T
are bounded. Next, we show the closedness of these sets.

Let us take any point k in the interior of K. We know that, by definition of interior, there exists an
ε > 0 such that {y : ∥k − y∥ ≤ ε} = k + εBn ⊂ K. Specifically, (k, εIn) ∈ F . The volume of this ellipsoid
is εnV ol(Bn). We can now define Fε = {(b, T ) ∈ F : V ol(b + TBn) ≥ εnV ol(Bn)}. This set contains all
ellipsoids of volume at least εnV ol(Bn). Moreover, this set is non-empty. We will show closedness of this set.
Let {(bm, Tm)}m ⊂ Fε be a sequence that converges to (b, T ), that is, ∥bm − b∥ → 0 and ∥Tm − T∥op → 0.

We have for any x ∈ Bn, ∥(bm + Tmx) − (b + Tx)∥ ≤ ∥bm − b∥ + ∥Tm − T∥op∥x∥ → 0. Thus, the sets
bm + TmBn converges pointwise to b + TBn. Hence, b + TBn ⊂ K because otherwise, there exists x′ ∈ Bn

such that b+Tx′ /∈ K. In other words, there exists an ε′ > 0 such that the ε′-neighbourhood of b+Tx′ does
not contain any point of K. However, bm+Tmx′ ∈ K for all m ∈ N, and we know by pointwise convergence,
there exists an M ∈ N such that for all m > M , ∥(bm + Tmx′) − (b + Tx′)∥ < ε′. This is a contradiction.
Therefore, we must have b+ TBn ⊂ K. Hence, (b, T ) ∈ F .

Finally, we have by convergence of Tm to T 2 and by continuity of det(·), det(Tm) → det(T ). Thus,
det(T ) ≥ εn. Hence, (b, T ) ∈ Fε. Now, we can conclude that Fε is closed.

By closedness and boundedness of Fε, we have that Fε is compact. Thus, the continuous function
(b, T ) 7→ det(T ) achieves the maximum value over this set. Moreover, since Fε contains all ellipsoids of
volume at least εnV ol(Bn), we have the all other ellipsoids contained in K are of volume smaller than this
quantity. Thus, the maximum over these two sets must be achieved on Fε. This proves the existence of the
maximum volume ellipsoid.

Uniqueness: Now, we show the uniqueness of the maximum volume ellipsoid. Without loss of generality,
assume that E1 = Bn and E2 = b + TBn are the two different ellipsoids of maximum volume contained in
K. From V ol(E1) = V ol(E2), we have det(T ) = 1. Now consider the ellipsoid E3 = b

2 + In+T
2 Bn. For any

x ∈ Bn,
b
2 + In+T

2 x = 1
2x+ 1

2 (b+ Tx) ∈ K because E1, E2 ⊆ K and K is convex. Thus, E3 ⊆ K. Moreover,

V ol(E3) = det
(
In+T

2

)
V ol(Bn) = det

(
In+T

2

)
V ol(E1). Thus, by maximality of E1, det

(
In+T

2

)
≤ 1. Now, we

have, by Minkowski’s determinant inequality [Horn and Johnson, 2012, Theorem 7.8.21],

det

(
In + T

2

) 1
n

≥ det

(
In
2

) 1
n

+ det

(
T

2

) 1
n

=
1

2
+

1

2
= 1

Hence, det
(
In+T

2

)
= 1 which implies that T = In (because of equality condition of the Minkowski inequality).

This in turn gives that E3 = b
2 + Bn. Moreover, b ̸= 0 because E1 ̸= E2 by assumption. Consider the

ellipsoid E ′
3 = b

2 + (In + δbb⊺)Bn, where δ > 0. We have V ol(E ′
3) = (1 + δ)V ol(Bn). Hence, E ′

3 has
a bigger volume than the maximum volume ellipsoids. Lastly, let us take any point in the ellipsoid E ′

3:
b
2 + (In + δbb⊺)x = x + ( 12 + δb⊺x)b, where x ∈ Bn. Note that x ∈ K and x + b ∈ K, thus by convexity of
K, x + λb ∈ K for all λ ∈ [0, 1]. Further, we have −∥b∥ ≤ b⊺x ≤ ∥b∥. Consequently, by choosing δ = 1

4∥b∥ ,

we have 1
2 + δb⊺x ∈ [1/4, 3/4]. This implies that, x+( 12 + δb⊺x)b ∈ K. Hence, E ′

3 ⊆ K. This a contradiction
because this contained ellipsoid has volume larger than the maximum. Thus we conclude that the maximum
volume ellipsoid must be unique.

Now, we present John’s theorem on the maximum volume ellipsoid contained in a convex body K. This
theorem characterizes the points of contact between the maximum volume ellipsoid and the convex body.
The theorem is formally stated below. John proved the implication of (i) to (ii) while Ball proved that the
converse is also true.

Theorem 2.1 (John’s Theorem with Ball’s strengthening). Given a convex body K, the following are
equivalent:

(i) Bn is the maximum volume ellipsoid contained in K

2convergence in operator norm implies element-wise convergence, which in turn implies convergence with respect to any
continuous function. See here for example.
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Figure 2: If the contact points are not well spread in all the directions, then it is possible to increase the ellipsoid in
those directions in which contact points are not present. The red arrows indicate that we can increase the ellipsoid
to find an ellipsoid of even bigger volume.

(ii) Bn ⊆ K and ∃{u1, u2, . . . , um} ⊂ ∂K ∩ ∂Bn and {c1, . . . , cm} ⊂ R+ such that (a)
∑m

i=1 ciui = 0 and
(b)

∑m
i=1 ciuiu

⊺
i = In. Moreover, m = O(n2).

The theorem says that the contact points of the maximum volume ellipsoid with the convex body, when
the ellipsoid is Bn, is spread in all directions well. Further, we can have a small subset of the contact points
such that this condition holds. Note that if the contact points were not spread in all directions, then it would
be possible to extend the ellipsoid in the directions where the contact points are not spread. Figure 2 shows
this phenomenon.

Before proving John’s theorem, let us look at an immediate corollary.

Corollary 2.1. Given a convex body K, if E is the maximum volume enclosed ellipsoid, then E ⊆ K ⊆ nE.
Further, if K is symmetric, E ⊆ K ⊆

√
nE.

To prove the corollary, we make an observation that will be useful.

Observation 2.1. If u ∈ Sn−1, then the hyperplane at u that has all of Bn on one side is given by
H = {x ∈ Rn : ⟨x, v⟩ = 1}. Moreover, H is the only such hyperplane.

Proof. First we show that all of Bn lies in the same halfspace of H. For any x ∈ Bn, ⟨x, u⟩ ≤ ∥x∥ · ∥u∥ ≤
1, where the first inequality is by Cauchy-Schwarz. Thus, all of Bn lies in the halfspace H− = {x ∈
Rn : ⟨x, u⟩ ≤ 1}. Now suppose there exists v ∈ Sn−1, v ̸= ±u, and t ∈ R, such that the hyperplane
H ′ = {x ∈ Rn : ⟨x, v⟩ = t} passes through u and has Bn on one side. Therefore, ⟨u, v⟩ = t. Thus,
H ′ = {x ∈ Rn : ⟨x, v⟩ = ⟨u, v⟩}. Since v ∈ Sn−1 ⊂ Bn, we must have v lies in one of the halfspaces of
H ′. Now, ⟨v, v⟩ = 1 > ⟨u, v⟩, the inequality being (strict) again due to Cauchy-Schwarz. Thus, v lies in the
halfspace H ′

+ = {x ∈ Rn : ⟨x, v⟩ ≥ ⟨u, v⟩}. However, for −v ∈ Bn, we have ⟨−v, v⟩ = −1 < ⟨u, v⟩. Hence,
−v /∈ H ′

+. Therefore, Bn does not lie on one side H ′. This a contradiction and hence, no such v exists.
Hence, the hyperplane at u that has Bn on one side is unique.

The hyperplane mentioned in the above observation is called the supporting hyperplane at that point.
Now, we are ready to give the proof of the corollary.

Proof. Without loss of generality, let Bn be the maximum volume enclosed ellipsoid of K (otherwise apply
on K the inverse of the transformation that maps Bn to E). Further, let the contact points be {u1, . . . , um}
and their corresponding coefficients from John’s theorem be {c1, . . . , cm}. Then, since ui’s lie on Sn−1, we
have ∥ui∥ = 1. Thus,

n = Tr(In) = Tr

(
m∑
i=1

ciuiu
⊺
i

)
=

m∑
i=1

ci Tr(uiu
⊺
i ) =

m∑
i=1

ci Tr(u
⊺
i ui) =

m∑
i=1

ci · 1 =

m∑
i=1

ci

Note that the supporting hyperplane of K at ui is also a supporting hyperplane of Bn at ui, because all
of K lies on one side of this hyperplane, and since Bn ⊆ K, all of Bn lies on one side of this hyperplane.
However, by the above observation, we have that the unique supporting hyperplane of Bn at ui is H = {x ∈
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Rn : ⟨x, ui⟩ ≤ 1}. Thus, H is also the unique supporting hyperplane of K at ui. Hence, we have, for all
x ∈ K, ⟨x, ui⟩ ≤ 1. Now we can write:

∥x∥2 = x⊺Inx = x⊺

(
m∑
i=1

ciuiu
⊺
i

)
x (John’s theorem)

=

m∑
i=1

ci(x
⊺ui)(u

⊺
i x)

=

m∑
i=1

ci⟨x, ui⟩2

=

m∑
i=1

ci⟨x, ui⟩2 − 2

m∑
i=1

ci⟨ui, x⟩+
m∑
i=1

ci −
m∑
i=1

ci (
∑m

i=1 ciui = 0 by John’s theorem)

=

m∑
i=1

ci (⟨x, ui⟩ − 1)
2 −

m∑
i=1

ci

≤
m∑
i=1

ci(1− ⟨x, ui⟩) · max
i∈[m]

(1− ⟨x, ui⟩)−
m∑
i=1

ci (⟨x, ui⟩ ≤ 1)

=

(
max
i∈[m]

1− ⟨x, ui⟩
)
·

(
m∑
i=1

ci −
m∑
i=1

ci⟨x, ui⟩

)
−

m∑
i=1

ci

=

(
max
i∈[m]

1− ⟨x, ui⟩
)
·

m∑
i=1

ci −
m∑
i=1

ci (
∑m

i=1 ciui = 0)

=

(
max
i∈[m]

−⟨x, ui⟩
)
·

m∑
i=1

ci

≤ ∥x∥n (Cauchy-Schwarz;
∑m

i=1 ci = n)

Therefore, ∥x∥2 ≤ ∥x∥ · n which gives us ∥x∥ ≤ n, for all x ∈ K. Thus, K ⊆ nBn.
For the symmetric case, we have that −x ∈ K whenever x ∈ K. Thus, ⟨−x, ui⟩ ≤ 1 and ⟨x, ui⟩ ≤ 1.

Combining, we have |⟨x, ui⟩|≤ 1. Thus, ∥x∥2 =
∑m

i=1 ci⟨x, ui⟩2 ≤
∑m

i=1 ci · 1 = n. Hence, ∥x∥ ≤
√
n. Thus,

K ⊆
√
nBn.

The corollary implies that if the maximum volume ellipsoid is scaled up by at most n, the resulting
ellipsoid will contain the convex body entirely. Indeed, the factor n is tight and an example of such a convex
body is the n− 1-regular simplex (the convex hull of n points that are pairwise equidistant)3. A symmetric
body for which the

√
n factor is tight is the unit cube. Now, give the proof of John’s theorem.

Proof. We will give the proof for the general case. The symmetric case requires less algebraic manipulations
because for a symmetric convex body, if u is a contact point between convex body K and its max volume
ellipsoid, then so is −u. Therefore, the coefficient of u, c can be reduced to c/2 and the coefficient of −u can
be made c/2. This preserves the property (b) of the contact points while in the LHS of property (a) has one
less summand. Repeating this argument, we see that property (a) is trivial for symmetric convex bodies.
We therefore need to consider only property (b) for the symmetric case. In what follows, we describe the
proof of John’s theorem in full generality.

(ii) =⇒ (i): This is the easier direction is to prove. We will start with this. The idea is show that
volume of any ellipsoid contained in K is at most the volume of Bn. For this, let E = b + TBn be any
ellipsoid contained in K. For any 1 ≤ i ≤ m, b + Tui ∈ E . Moreover, since H = {x ∈ Rn : ⟨ui, x⟩ ≤ 1} is
the supporting hyperplane of K (see proof of corollarly 2.1) at ui, and E ⊆ K, we have ⟨ui, b + Tui⟩ ≤ 1.

3This can be embedded in n dimension as follows: vi = [0, . . . , 1, . . . , 0] ∈ Rn, where the i-th entry is 1 and rest are 0’s,
1 ≤ i ≤ n. Then (n − 1)-regular simplex is the convex hull of vi’s. See here for a calculation of ratio of radii of the inscribed
and circumscribed hyperspheres.
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Figure 3: Left: The maximum volume contained ellipsoid for a triangle is its inscribed circle (in R2). A scaling
of the incircle by n = 2 gives the circumcircle in the equilateral triangle case. Therefore the scaling is tight in this
case. Moreover, in high dimensions, the generalization of the equilateral triangle is the regular simplex, for which the
scaling is indeed tight. Right: The maximum volume contained ellipsoid of the square, when scaled by

√
n =

√
2

gives the circumcircle of the square, which contains it. Note that the square is a symmetric convex body. Moreover,
the generalization of the square in high dimensions, called the hypercube, also exhibits the tight scaling of the factor√
n (i.e., a factor less than

√
n does not suffice).

Therefore,

n =

m∑
i=1

ci ≥
m∑
i=1

ci⟨ui, b+ Tui⟩ =
m∑
i=1

ci⟨ui, b⟩+
m∑
i=1

ci⟨ui, Tui⟩

= 0 +

m∑
i=1

ci Tr (⟨ui, Tui⟩) (
∑m

i=1 ciui = 0)

=

m∑
i=1

ci Tr (uiu
⊺
i T )

= Tr

(
(

m∑
i=1

ciuiu
⊺
i )T

)
= Tr(InT ) = Tr(T )

The volume of the ellipsoid E is det(T )V ol(Bn). Now, by AM-GM inequality det(T ) =
∏n

i=1 λi ≤
(∑n

i=1 λi

n

)n
=(

Tr(T )
n

)n
≤ 1, where λi’s are eigenvalues of T . Hence, V ol(E) ≤ V ol(Bn). Thus, Bn must be maximum

volume ellipsoid contained in K.
(i) =⇒ (ii): We consider the following Rn2+n-dimensional space: {[vec(xx⊺), x] : x ∈ Rn}, where vec(M)

is the vector created by stacking the rows of the matrix one after the other to get a long vector. We also use
the notation ⟨X,Y ⟩ to denote

∑n
i=1

∑n
j=1 XijYij for two matrices X,Y ∈ Rn×n.

To prove this implication, we consider the convex hull C = conv({[vec(uu⊺), u] : u ∈ ∂Bn ∩ ∂K}).
Our goal will be to show that [vec( 1nIn), 0n] ∈ C, where 0n is n-dimensional zero-vector. We do this via
contradiction.

Suppose [vec( 1nIn), 0n] /∈ C. Thus, by the Separating Hyperplane Theorem (Theorem 1.2), there exists

a vector [vec(H), h] in Rn2+n (where H ∈ Rn×n and h ∈ Rn) such that for all p ∈ C, ⟨[vec(H), h], p⟩ > α >
⟨[vec(H), h], [vec( 1nIn), 0n]⟩ = ⟨H, 1

nIn⟩+ ⟨h, 0⟩ = ⟨H, 1
nIn⟩. Particularly,

⟨H,uu⊺⟩+ ⟨h, u⟩ > α > ⟨H,
1

n
In⟩ ∀ u ∈ ∂Bn ∩ ∂K

Since H is operated on symmetric matrices, we can replace H with its symmetric version (H +H⊺)/2 which
still preserves the separation property. Thus without loss of generality, let H be symmetric.
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Further, we see that ⟨H+σIn, uu
⊺⟩ = ⟨H,uu⊺⟩+σ∥u∥2 = ⟨H,uu⊺⟩+σ, since u ∈ ∂Bn = Sn−1. Similarly,

⟨H + σIn, In⟩ = ⟨H, In⟩+ σ. Thus, we can replace H with H + σIn for any σ. Particularly, we can choose
σ such that H + σIn has trace equal to 0. Hereafter, without loss of generality let Tr(H) = 0.

Now, we consider the ellipsoid Eδ = − δ
2 (In + δH)−1h + (In + δH)−

1
2Bn. For small enough δ > 0, the

matrix In + δH will be positive definite, and therefore a true ellipsoid. The volume of this ellipsoid is

V ol(E) = det
(
(In + δH)−

1
2

)
V ol(Bn) =

V ol(Bn)√
det(In + δH)

>
V ol(Bn)√

(Tr(In + δH)/n)n
= V ol(Bn)

where the inequality is via AM-GM, with strict inequality because H has at least one positive and one
negative eigenvalue because H is non-zero whereas its trace is 0, thus In+δH cannot have same eigenvalues.
Moreover, in the last equality, we have used the fact that Tr(In + δH) = Tr(In) + δTr(H) = n.

Note that the ellipsoid Eδ can be alternately expressed as

Eδ = {x ∈ Rn :

(
x+

δ

2
(In + δH)−1h

)⊺

(In + δH)

(
x+

δ

2
(In + δH)−1h

)
≤ 1}

Setting x = u, where u ∈ ∂Bn ∩ ∂K,(
u+

δ

2
(In + δH)−1h

)⊺

(In + δH)

(
u+

δ

2
(In + δH)−1h

)
(1)

= ⟨u, Inu⟩+ δ (⟨u,Hu⟩+ ⟨h, u⟩) + δ2

4
⟨h, (In + δH)−1h⟩

= ∥u∥2 + δ (⟨H,uu⊺⟩+ ⟨h, u⟩) + δ2

4
⟨h, (In + δH)−1h⟩

≥ ∥u∥2 + δ (⟨H,uu⊺⟩+ ⟨h, u⟩) (In + δH is p.d.)

= 1 + δ (⟨H,uu⊺⟩+ ⟨h, u⟩) (u ∈ ∂Bn)

> 1 + α (⟨H,uu⊺⟩+ ⟨h, u⟩ > α)

Therefore, u lies outside Eδ. Note that as δ ↓ 0, Eδ → Bn. Since ∂K is compact and the set ∂K∩E gradually
decreases to ∂Bn ∩ ∂K, there exists a small enough δ such that the whole of Eδ is inside K. Formally, we
make the following arguments.

Claim 2.1. There exists an ε > 0 such that − 1
2 (H + 1

εIn)
−1h lies on Sn−1 and H + 1

εIn is positive definite.

The claim can be easily proved by observing that the norm of the vector is given as a function of ε as

f(ε) = ε2

4 h
⊺(In + εH)−2h. As ε ↓ 0, we have f(ε) ↓ 0, and when ε ↑ 1/|λmin(H)| (note that λmin(H) is

negative), f(ε) → ∞. Therefore, by continuity of f(ε), there exists a ε′ such that f(ε′) = 1. Moreover, since
ε′ < 1/|λmin(H)|, H + 1

ε′ In is positive definite.
Using the claim above and Lemma 2.1 of [Hager, 2001], we have that minx∈Sn−1⟨H,xx⊺⟩ + ⟨h, x⟩ =

− 1
4 ⟨h, (

1
εIn +H)−1( 2εIn +H)( 1εIn +H)−1h⟩ < 0 since In + εH is positive definite.

Now, let w be a vector such that ⟨H,ww⊺⟩+ ⟨h,w⟩ < 0. Thus, with u ∈ ∂Bn ∩ ∂K,

0 > ⟨H,ww⊺⟩+ ⟨h,w⟩ = ⟨H,uu⊺⟩+ ⟨h, u⟩+ ⟨H,u(w − u)⊺⟩+ ⟨H, (w − u)u⊺⟩+ ⟨h,w − u⟩
> α− ∥w − u∥ · (2∥H∥op + ∥h∥)

which implies that, ∥w − u∥ >
α

2∥H∥op + ∥h∥

Therefore, w ∈ V := {x ∈ Sn−1 : ∀ u ∈ ∂Bn ∩ ∂K, ∥x − u∥ ≥ α
2∥H∥op+∥h∥}. Moreover, this also shows that

m := minx∈V ⟨H,xx⊺⟩ + ⟨h, x⟩ < 0. The set V is the set of points on Sn−1 that are “far” from the contact
points. We will show that all the points in ∂K which are obtained by extending the vectors in V to intersect
∂K are actually outside Eδ.
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For a vector v ∈ V , let t > 0 be such that tv ∈ ∂K. Note that t > 1 because Bn ⊆ K and t /∈ ∂Bn ∩ ∂K.
Therefore, (

tv +
δ

2
(In + δH)−1h

)⊺

(In + δH)

(
tv +

δ

2
(In + δH)−1h

)
(2)

= t2⟨In + δH, vv⊺⟩+ δ⟨h, tv⟩+ δ2

4
⟨h, (In + δH)−1h⟩

> t⟨In + δH, vv⊺⟩+ tδ⟨h, v⟩ (In + δH is p.d. and t > 1)

≥ t∥v∥2 + δt (⟨H, vv⊺⟩+ ⟨h, v⟩)
≥ t+ δtm = t(1 + δm)

Let tm = minv∈V t s.t. tv ∈ ∂K be the minimum scaling required for a vector in V to extend it to ∂K. For

δ < 1−(1/tm)
|m| , we have t(1 + δm) > 1. Thus, choosing this δ, we have tv lies outside Eδ for all v ∈ V and

their corresponding values of t.
The final step is to show that all points in Sn−1 \ V also lie outside Eδ. This is rather easy and can

be done as follows. For any v ∈ Sn−1 \ V , there exists a u ∈ ∂Bn ∩ ∂K such that ∥v − u∥ < α
2∥H∥op+∥h∥ .

Therefore, we have, for a v and its corresponding u,

|⟨H, vv⊺⟩+ ⟨h, v⟩ − ⟨H,uu⊺⟩+ ⟨h, u⟩|
= |⟨H, v(v − u)⊺⟩+ ⟨H,u(v − u)⊺⟩+ ⟨h, v − u⟩|
≤ (2∥H∥op · ∥v − u∥+ ∥h∥ · ∥v − u∥) (Cauchy-Schwarz)

= (2∥H∥op + ∥h∥) · ∥v − u∥
< α (∥v − u∥ < α

2∥H∥op+∥h∥ )

Once again, let t > 1 be the scaling factor such that tv ∈ ∂K for a v ∈ Sn−1 \ V . Therefore, we have:(
tv +

δ

2
(In + δH)−1h

)⊺

(In + δH)

(
tv +

δ

2
(In + δH)−1h

)
> t+ δt (⟨H, vv⊺⟩+ ⟨h, v⟩) (see (2))

≥ t+ δt (⟨H,uu⊺⟩+ ⟨h, u⟩ − α)

≥ t+ δt(1 + α− α) (see (1))

= t(1 + δ) > 1

This shows that tv lies outside Eδ.
Thus, we conclude that Eδ is completely inside K for a suitable value of δ > 0. Hence, we have found

an ellipsoid of volume bigger than that of Bn contained inside K. This contradicts the assumption that Bn

is the maximum volume ellipsoid of K. Therefore, we must have [vec(In)/n, 0n] ∈ C = conv{[vec(uu⊺), u] :
u ∈ ∂Bn ∩ ∂K}. In other words, there exists c1, . . . , cm ≥ 0,

∑m
i=1 ci = 1 and u1, . . . , um ∈ ∂Bn ∩ ∂K such

that,

m∑
i=1

ciui = 0 and

m∑
i=1

ciuiu
⊺
i =

1

n
In

Moreover, by Carathéodory’s Theorem, m ≤ n(n+1)
2 + n + 1 = n(n+3)

2 + 1 (note that n(n + 1)/2 suffices
instead of n2 because the convex hull contains only symmetric matrices). This completes the proof of John’s
theorem.

Remark 2.1. A convex body whose maximum volume enclosed ellipsoid is the unit ball Bn is said to be
in John’s position. John’s theorem shows that there is an invertible map that can be used to map a given
convex body to its John’s position. Although finding such a transformation is computationally hard, good
approximations (upto (1+ε) factor) to the John ellipsoid can be computed in polynomial time. The algorithm
is based on a Franke-Wolfe type coordinate ascent that maximizes the log det(·) of the p.d. matrix that encodes
the transformation of the unit ball to John’s ellipsoid. For a detailed discussion please refer to [Todd, 2016].
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2.1 Löwner Ellipsoid

Similar to the maximum volume ellipsoid contained in a convex body K, we can also show that every convex
body has an ellipsoid of minimum volume that contains K. Moreover, a characterization of the contact
points similar to John’s theorem is also possible. For the symmetric case, it is easy to show this by applying
John’s theorem on the polar of K defined as K◦ := {y ∈ Rn : ⟨y, x⟩ ≤ 1 ∀ x ∈ K}. Towards this, we state
the following lemmas.

Claim 2.2. For a convex body K, its polar K◦ is convex.

Proof. Suppose y1, y2 ∈ K◦. Fix any x ∈ K. Then, ⟨y1, x⟩ ≤ 1 and ⟨y2, x⟩ ≤ 1. Thus, ⟨λy1 + (1 − λ)y2⟩ =
λ⟨y1, x⟩+(1−λ)⟨y2, x⟩ ≤ λ+1−λ = 1, for any λ ∈ [0, 1]. Therefore, λy1+(1−λ)y2 ∈ K◦, for all λ ∈ [0, 1].
Hence K◦ is convex.

Next, we state the following lemma about invertible transformation of convex bodies.

Lemma 2.2. If K is a convex body in Rn with 0 in the interior of K, then for any invertible T ∈ Rn×n, it
holds that (TK)◦ = T−⊺K◦.

Proof. We have by definition of polar

(TK)◦ = {y ∈ Rn : ⟨y, x⟩ ≤ 1 ∀ x ∈ TK}
= {y ∈ Rn : ⟨y, x⟩ ≤ 1 ∀ x ∈ K}
= {y ∈ Rn : ⟨T ⊺y, x⟩ ≤ 1 ∀ x ∈ K}
= {T−⊺y : y ∈ Rn, ⟨y, x⟩ ≤ 1 ∀ x ∈ K}
= T−⊺{y ∈ Rn : ⟨y, x⟩ ≤ 1 ∀ x ∈ K}
= T−⊺K◦

Lastly, we have the following property about polars of convex bodies.

Lemma 2.3. If K and L are two convex bodies such that K ⊆ L, then we have L◦ ⊆ K◦.

Proof. If x ∈ L◦, then ⟨x, y⟩ ≤ 1 for all y ∈ L. But L ⊇ K, thus, ⟨x, y⟩ ≤ 1 for all y ∈ K, which implies that
x ∈ K◦. Therefore, we have L◦ ⊆ K◦.

Now we are ready to prove the analog of John’s theorem for Löwner ellipsoids, which is the ellipsoid of
minimum volume containing a given convex body. Hereafter, assume K to be a symmetric convex body. By
symmetry, the Löwner ellipsoid of K must have its center at 0.

Applying John’s theorem on K◦, let Bn be the maximum volume contained ellipsoid of K◦. Then, since
Bn ⊆ K◦, for any y ∈ Bn, we have that ⟨y, x⟩ ≤ 1 for all x ∈ K (by definition of polar). Letting x̂ be
the unit vector in the direction of x ∈ K (note that x̂ ∈ Bn), we have ⟨x, x̂⟩ = ∥x∥ ≤ 1. Thus, K ⊆ Bn.
Now suppose TBn, where T ̸= In is a p.d. matrix, is the minimum volume ellipsoid containing K. Then we
must have det(T ) < 1. However, since K ⊆ TBn, applying lemma 2.3 (TBn)

◦ ⊆ K◦. Again, by lemma 2.2,
T−1Bn ⊆ K◦ (note that B◦

n = Bn and T is symmetric). Thus, T−1Bn must be an ellipsoid of volume smaller
than Bn, i.e., det(T

−1) < 1. Therefore, 1 > det(T ) det(T−1) = det(TT−1) = 1, which is a contradiction.
Hence, det(T ) = 1 and thus by uniqueness (which can be shown by similar arguments), Bn must be the
smallest volume ellipsoid containing K.

In the next section, we will see an application of the idea of maximum volume ellipsoid in designing good
estimators for the well known problem of linear regression.

3 Optimal Design

We first give a motivating example for the problem of experimental design. This is a well-studied problem
in statistics and has recently seen plethora of applications in machine learning and reinforcement learning.
This continues to be a rich area of study and what we describe here is just a starting point.
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3.1 Motivation

Consider the following problem. We have been given P = {x1, . . . , xN} ⊂ Rn, a set of N vectors. Our goal
is to learn an unknown parameter vector θ∗ ∈ Rn. However, we are given a query model in which we can
pick a vector zt from the set P , for t = 1, . . . , T times, and for every zt, we can observe

yt = ⟨zt, θ∗⟩+ ηt, where ηt ∼ N (0, 1)

A standard way to solve this problem is to solve the least squares regression: θ̂ := argminθ∈Rn

∑T
t=1 (⟨zt, θ⟩ − yt)

2
.

The solution can be obtained in closed form by applying first order optimality condition (setting derivative

w.r.t θ to 0) as θ̂ =
(∑T

t=1 ztz
⊺
t

)−1 (∑T
t=1 ytzt

)
. The matrix V =

∑T
t=1 ztz

⊺
t is called the design matrix.

We have the following result:

Proposition 3.1. If ηt’s are zero-mean, then θ̂ is an unbiased estimator of θ∗. In other words, E[θ̂] = θ∗.

Proof.

θ̂ = V −1
T∑

t=1

ytzt = V −1
T∑

t=1

(⟨zt, θ∗⟩+ ηt) zt = V −1
T∑

t=1

zt⟨zt, θ∗⟩+ V −1
T∑

t=1

ηtzt

= V −1
T∑

t=1

(ztz
⊺
t ) θ

∗ + V −1
T∑

t=1

ηtzt = V −1V θ∗ + V −1
T∑

t=1

ηtzt = θ∗ + V −1
T∑

t=1

ηtzt (3)

therefore, E[θ̂] = θ∗ + E

[
V −1

T∑
t=1

ηtzt

]

= θ∗ + V −1
T∑

t=1

E[ηt]zt = θ∗ (E[ηt] = 0)

Although the estimator θ̂ is unbiased, we desire stronger guarantees from our estimator. We ask the
following question: does there exists a set of query vectors {z1, . . . , zT }, zt ∈ P, 1 ≤ t ≤ T , such that for any

point x ∈ P , the deviation |⟨x, θ̂ − θ∗⟩| is small. Put another way, we want our estimator θ̂ to predict the
value ⟨x, θ∗⟩ as well as possible for all x ∈ P . The key challenge here is that the size of the set P , that is
N , can be much larger than T . Thus, we cannot query every point in P sufficiently many times such that
we have good estimate for every point. One therefore needs a cleverer way of querying. This is problem in
statistics literature is called the experimental design.

Suppose zt, t ∈ [T ], are chosen non-adaptively, meaning, one decides beforehand which points to query
and this decision is unchanged by the observations yt, t ∈ [T ]. Restricting the queries to be non-adaptive
might seem like a handicap but one can show that the gain from adaptive policies is not any better in the
worst case. Let us try to apply some standard probability bounds on the deviation ⟨x, θ̂ − θ∗⟩.

P[⟨x, θ̂ − θ∗⟩ ≥ ε] = P[exp(λ⟨x, θ̂ − θ∗⟩) ≥ exp(λε)] (for λ > 0)

≤ E[exp(λ⟨x, θ̂ − θ∗⟩)]
exp(λε)

(by Markov’s inequality)

= e−λε · E[exp(λ⟨x, V −1
T∑

t=1

ηtzt⟩)] (see (3))

= e−λε ·
T∏

t=1

E[exp(ληt⟨x, V −1zt⟩)] (ηtzt are independent for t ∈ [T ])
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For a Gaussian random variable η ∼ N (0, 1), the moment generating function E[exp(λη)] = exp( 12λ
2) for

any λ ∈ R. Therefore,

P[⟨x, θ̂ − θ∗⟩ ≥ ε] ≤ e−λε ·
T∏

t=1

exp

(
1

2
λ2⟨x, V −1zt⟩2

)

= e−λε · exp

(
1

2
λ2

T∑
t=1

⟨x, V −1zt⟩2
)

= e−λε · exp

(
1

2
λ2

T∑
t=1

(x⊺V −1zt)(z
⊺
t V

−1x)

)

= e−λε · exp

(
1

2
λ2(x⊺V −1

(
T∑

t=1

ztz
⊺
t

)
V −1x)

)

= e−λε · exp
(
1

2
λ2(x⊺V −1x)

)

Since the above inequality holds for all λ > 0, it particularly holds that P[⟨x, θ̂−θ∗⟩ ≥ ε] ≤ inf
λ>0

exp

(
1

2
λ2(x⊺V −1x)− λε

)
.

Minimizing the quadratic in the exponent, we obtain

P[⟨x, θ̂ − θ∗⟩ ≥ ε] ≤ exp

(
− ε2

2⟨x, V −1x⟩2

)
Therefore, to minimize the probability of deviation, we need to minimize ⟨x, V −1x⟩. Moreover, we need

to do so for all x ∈ P . Thus, the following natural question arises:

min
z1,...,zT

max
x∈P

⟨x, V −1x⟩ where V =

T∑
t=1

ztz
⊺
t

The above problem is computationally hard as it involves an integer program (think of variables wi ∈ {0, 1},
i ∈ [n], indicating whether xi ∈ P is to be included in {zt}t∈[T ] or not). We can relax the requirement
of the problem to ask for a distribution over P such that when points to be queried are samples from this
distribution, the expected design matrix gives a good deviation bound. In other words, we pose the following
optimization problem:

min
λ∈△(P )

max
x∈P

⟨x, V −1x⟩ where V =

N∑
i=1

λixix
⊺
i

where △(P ) is the probability simplex over P , i.e, △(P ) = {λ ∈ [0, 1]N :
∑N

i=1 λi = 1}. The above problem
is called the G-optimal design problem. This is a non-convex optimization problem and it is not clear how
to solve this problem.

3.2 Minimum Volume Enclosing Ellipsoid

Let us now return to the problem of finding the minimum volume ellipsoid that contains our point set P .
From John’s theorem, we know that such an ellipsoid exists and has nice characterization of the contact
points. We will see how this connects to the G-optimal design problem.

Consider a centered ellipsoid E = T 1/2Bn that contains P inside it (here T is a p.d. matrix). Alternatively,
the ellipsoid is given by E = {x ∈ Rn : ⟨x, T−1x⟩ ≤ 1}. Therefore, for all x ∈ P , we must have ⟨x, T−1x⟩ ≤ 1.
Moreover, the volume of E is det(T )V ol(Bn). Thus, the minimum volume ellipsoid containing P is given by:

min
T p.d.

det(T ) s.t. ⟨x, T−1x⟩ ≤ 1 ∀ x ∈ P
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From Minkowski determinant inequality, it can be seen that log det(·) is a strictly concave function over the
set of p.d. matrices. Moreover, the constraints above are non-convex in T . Therefore, we first replace T with
T−1 and then change the objective from det(·) to log det(·) (log being monotonically increasing preserves
the optimization problem). Finally, we obtain the following optimization problem:

min
T p.d.

− log det(T ) s.t. ⟨x, Tx⟩ ≤ 1 ∀ x ∈ P (P)

This is a convex program and can be solved via standard convex optimization algorithms. However, it is
interesting to look at the dual of this problem. Let us write the Lagrangian of the optimization problem and
then find the dual program. The Lagrangian is given by:

L(T, λ) = − log det(T ) +

N∑
i=1

λi(⟨xi, Txi⟩ − 1)

From the KKT conditions, we have at optimality, ∇TL = 0. This gives,

∇TL = −T−1 +

N∑
i=1

λixix
⊺
i = 0

which gives T =

(
N∑
i=1

λixix
⊺
i

)−1

iff RHS is p.d.

If V :=
∑N

i=1 λixix
⊺
i is positive semi-definite (with at least one 0 eigenvalue), then let k ∈ Rn be chosen such

that V k = 0 and ∥k∥ = 1 and set T = In + δkk⊺. Then, the Lagrangian becomes

L = − log det(In + δkk⊺) +

N∑
i=1

Tr((In + δkk⊺)λixix
⊺
i )−

N∑
i=1

λi

= − log det(In + δkk⊺) + Tr((In + δkk⊺)V )−
N∑
i=1

λi

= − log(1 + δ) + Tr(V )−
N∑
i=1

λi (det(In + vv⊺) = 1 + ∥v∥2 for any v; and V k = 0)

Thus, by choosing δ arbitrarily large, the Lagrangian becomes unbounded and hence no solutions exists.
Thus, the solution T = V −1 is valid only when V is p.d. Hereafter, we shall assume that V is p.d. Putting
T = V −1 in the Lagrangian, we obtain,

min
T p.d

L = log det(V ) +

n∑
i=1

Tr(V −1(λixix
⊺
i ))−

n∑
i=1

λi

= log det(V ) + Tr(V −1
n∑

i=1

λixix
⊺
i )−

N∑
i=1

λi

= log det(V ) + Tr(In)−
N∑
i=1

λi (V =
∑N

i=1 λixix
⊺
i )

= log det(V ) + n−
N∑
i=1

λi

Let
∑N

i=1 λi = nα and let λ′
i =

λi

nα and V ′ =:=
∑N

i=1 λ
′
ixix

⊺
i . Then we have

∑N
i=1 λ

′
i = 1 and V = nαV ′.

Rewriting in terms of λ′
i, we get,

min
T p.d.

L = log det(nαV ′) + n− nα

= log det(V ′) + n+ n log n+ n(logα− α)
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The above expression is maximized for α = 1. Thus,

max
λ≥0

min
T p.d

L = max
λ′≥0,

∑N
i=1 λ′

i=1
log det(V ′)

Renaming V ′ as V and λ′ as λ, we finally have,

max
λ∈△(P )

log det(V ) (D)

This problem is known as the D-Optimal design problem. This is the dual of the original problem of finding
the minimum volume ellipsoid containing P . We state the following theorem without giving its proof here
(see [Todd, 2016, Section 2.1] for the proof).

Lemma 3.1. The duality gap between (P) and (D) is 0.

Therefore, it suffices to solve the dual problem to obtain a solution for the primal problem, that is, a
solution to the D-optimal design problem also generates the solution to the (centered) minimum volume
enclosing ellipsoid of P .

Remark 3.1. We observe that if V ∗ =
∑N

i=1 λ
∗
i xix

⊺
i is the solution of the D-optimal design problem, then

the corresponding minimum volume centered ellipsoid is given by (nV ∗)−1/2Bn. Thus, although on the face
the D-optimal design looks like a volume maximization problem, it is actually inverse of the required ellipsoid
whose volume we want to minimize.

Remark 3.2. It is clear from the duality (by Slater’s condition) that whenever λ∗
i ̸= 0, we must have

⟨xi, V
∗−1xi⟩ = n (recall that V ∗ here is actually 1

n times the V defined in the original minimum volume
ellipsoid problem). Thus, the points x ∈ P whose corresponding λ∗’s are non-zero, lie on the boundary of the
ellipsoid. Hence, these are the contact points between the polytope P given by the convex hull of P and the
(centered) minimum volume enclosing ellipsoid of P. An example is shown in Figure 4 (left). The points
with non-zero λ∗ would correspond to the points E,F,H and J .

Remark 3.3. The centered assumption can be relaxed by recasting the problem into n + 1-dimensions and
rewriting xi’s as [xi, 1] ∈ Rn, that is, appending a 1 to the vectors xi ∈ P . Thereafter, the D-optimal design
can be solved and the resulting ellipsoid can be projected on to the hyperplane given by {x ∈ Rn : ⟨en+1, x⟩ =
1}, where en+1 is the (n+ 1)-th standard basis vector. One such visualization is shown in Figure 4 (right).
See [Todd, 2016, Section 2.3] for the details.

In the next subsection we will finally see the connection between the D-optimal design problem and the
G-optimal design problem.

3.3 Kiefer-Wolfowitz Theorem

Kiefer and Wolfowitz in 1960 showed a remarkable connection between the two design problems stated above.
The result can be succinctly stated as follows:

Theorem 3.1 (Kiefer-Wolfowitz). Given a collection of points P = {x1, . . . , xN} such that span(P ) = Rn,
the following statements are equivalent:

(i) λ∗ is the solution of the G-optimal design problem.

(ii) λ∗ is the solution of the D-optimal design problem.

(iii) The objective value of G-optimal design at λ∗ is n.

Proof. Firstly, we state the following identity for any matrix A ∈ Rn×n with positive determinant whose
elements are a function of x ∈ R: ∂

∂x log det(A) = Tr
(
A−1 ∂A

∂x

)
.

Now recall that in the D-optimal design problem, we have V =
∑N

i=1 λixix
⊺
i , where λ ∈ △(P ). Using

the stated identity, we have,

∂

∂λi
log det(V ) = Tr

(
V −1 ∂V

∂λi

)
= Tr

(
V −1(xix

⊺
i )
)
= ⟨xi, V

−1xi⟩ (4)
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Figure 4: Left: The black ellipse is the centered minimum volume enclosing ellipsoid for the point set, whereas
the red ellipse is the uncentered minimum volume enclosing ellipsoid. The D-optimal design problem will return the
black ellipse, with the support of λ being points E,F,H and J . Right: While the points lie in 2D (represented as
the blue plane z = 2 in 3D), by embedding them in 1 higher dimension, we are able to obtain a minimum volume
enclosing ellipsoid (in this case, a 2D ellipse, shown by black outline) that is not centered. The red ellipsoid in 3D is
the ellipsoid resulting from solving the D-optimal design in one higher dimension.

We also have,

N∑
i=1

λi⟨xi, V
−1xi⟩ =

N∑
i=1

Tr
(
V −1(λixix

⊺
i )
)
= Tr

(
V −1

N∑
i=1

λixix
⊺
i

)
= Tr(In) = n (5)

This further shows that for all λ ∈ △(P ) and its corresponding V , the objective value of G-optimal design
maxx∈P ⟨x, V −1x⟩ ≥ n (observation).

Now, we start the proof by showing the implications cyclically.
(ii) =⇒ (i) and (iii): Let V ∗ be the value of V at the maximizer λ∗. By concavity of log det(·), we have

the necessity of the first order optimality condition, for any λ ∈ △(P ),

0 ≤ ⟨∇λ log det(V ) |λ∗ , λ∗ − λ⟩

=

N∑
i=1

λ∗
i ⟨xi, V

∗−1xi⟩ −
N∑
i=1

λi⟨xi, V
∗−1xi⟩ ≤ 0 (by identity 4)

= n−
N∑
i=1

λi⟨xi, V
∗−1xi⟩ (by identity 5)

therefore,

N∑
i=1

λi⟨xi, V
∗−1xi⟩ ≤ n

Since the above inequality holds for any λ ∈ △(P ), we can set λ = ei, varying i ∈ [N ], where ei is the i-th
standard basis vector in RN . This gives us that for each i ∈ [N ], ⟨xi, V

∗−1xi⟩ ≤ n. Hence, the objective
value of G-optimal design for λ∗ given by maxx∈P ⟨x, V ∗−1x⟩ ≤ n.

On the other hand, by observation above, maxx∈P ⟨x, V ∗−1x⟩ ≥ n.
Therefore, maxx∈P ⟨x, V ∗−1x⟩ = n. Moreover, λ∗ is a solution to the G-optimal design problem because

it attains the minimum value possible for the G-optimal design problem.
(iii) =⇒ (ii): Given that the objective value of G-optimal design at λ∗ is n, we have, for any λ ∈ △(P ),

N∑
i=1

λ∗
i ⟨xi, V

∗−1xi⟩ ≤ max
x∈P

⟨x, V ∗−1x⟩ = n
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Moreover, we have
∑N

i=1 λ
∗
i ⟨xi, V

∗−1xi⟩ = n by the identity 5. Therefore, we obtain,

0 ≤
N∑
i=1

λ∗
i ⟨xi, V

∗−1xi⟩ −
N∑
i=1

λ∗
i ⟨xi, V

∗−1xi⟩

= ⟨∇λ log det(V ) |λ∗ , λ∗ − λ⟩

By sufficiency of the first order optimality condition of the concave log det(·) function, we have that λ∗ is a
maximizer of the D-optimal design problem.

(i) =⇒ (iii): This is now easy to show. By the fact that (ii) =⇒ (i) and that the solution to the D-optimal
design exists by John’s theorem, we have for the solution λ∗ of D-optimal design, which is also a solution
of the G-optimal design, maxx∈P ⟨x, V ∗−1x⟩ = n. Thus, any minimizer of the G-optimal design must attain
value at most n. However, λ ∈ △(P ) and its corresponding V , maxx∈P ⟨x, V −1x⟩ ≥ n (by observation).
Therefore, any minimizer of the G-optimal design attains value exactly n.

Lemma 3.2. There exists λ∗, a solution to the D-optimal design problem, such that size of support of λ∗ is

at most n(n+1)
2 + 1.

Proof. Letting V ∗ =
∑N

i=1 λ
∗
i xix

⊺
i , and using the vec notation, we have vec(V ∗) ∈ conv({vec(xix

⊺
i ) : i ∈

[N ]}) ⊂ Rn2

. However, since the convex hull contains only symmetric matrices, the actual dimension can
be reduced to n(n + 1)/2 by dropping the last n(n − 1)/2 entries from vec(xixi)

⊺, i ∈ [N ]. Therefore,

by Carathéodory’s theorem, there exists {z1, . . . , zn(n+1)
2 +1

} ⊂ P such that V ∗ =
∑n(n+1)

2 +1
i=1 αiziz

⊺
i , where∑n(n+1)

2 +1
i=1 αi = 1 and αi ≥ 0 for all i ∈ [n(n+1)

2 + 1]

This concludes the proof of the Kiefer-Wolfowitz equivalence theorem and the lemma that there is a
solution to the D-optimal design problem with O(n2) support size. Going back to our motivating problem
described in section 3.1, we see that if a point from P is queried ⌈λ∗T ⌉ times, where λ∗ is the solution to

the D-optimal design with support size of at most n(n+1)
2 + 1, then

N∑
i=1

⌈λ∗
i T ⌉ ≤ T +

n(n+ 1)

2
+ 1 (6)

V̂ :=

N∑
i=1

⌈λ∗
i T ⌉xix

⊺
i ≽

∑
i:λi>0

λ∗
i Txix

⊺
i = TV ∗ (7)

where V ∗ is defined as usual with respect to λ∗ and for two p.d. matrices A,B, A ≽ B means A−B is p.d.

The first inequality shows that the total number of queries made is only at most n(n+1)
2 + 1 more than T .

The second inequality shows that for all x ∈ P , ⟨x, V̂ −1x⟩ ≤ ⟨x, 1
T V

∗−1x⟩ ≤ n
T . Hence, the probability of

large deviation for the least squares regressor for any x ∈ P is bounded as:

P[⟨x, θ̂ − θ∗⟩] ≤ exp

(
− ε2

(n/T )

)
= exp

(
−Tε2

n

)
This shows us that by using the D-optimal design policy, we can get an exponential concentration in the
estimates of ⟨x, θ∗⟩ for all x ∈ P even when there are N ≫ T points. Note that if we were to query every point

in P equally often, the probability bound on the right would be exp
(
−Tε2

N

)
. This bound is significantly

worse when N ≫ n (in fact, N can be exponential in n).

Remark 3.4 (Computation of D-optimal Design). There are several algorithms to approximately compute
the solution to the D-optimal design. A solution which is within (1− ε) of the maximum D-optimal objective
value such that every constraint in the primal problem (P) is violated by a factor of at most (1 + ε), can
be computed (i) with a certain algorithm that requires O(n log log n + n

ε ) iterations with a preprocessing
computation of O(nN) (ii) with another algorithm that requires O(n log logN + N + n

ε ) iterations. Both
these algorithms require O(n2 + nN) computations per iterations. These algorithms mainly rely on Franke-
Wolfe type coordinate ascent schemes. See [Todd, 2016, Chapter 3] for a description of these algorithms.
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Remark 3.5 (Approximation of G-optimal Design). If only a good approximation to the G-optimal design
problem is desired, that is, if we just require that ⟨x, V −1x⟩ ≤ (1 + ε)n for all x ∈ P , then there is an
algorithm that requires (i) O(n log logN + n

ε ) iterations when λ is initialized as uniform distribution, and
(ii) O(n log log n + n

ε ) iterations when a special initialization (requiring O(n2N) preprocessing) is used.
The computational complexity of each iteration is O(n2 + nN). However, the interesting fact is that since
this algorithm is a coordinate ascent type algorithm, i.e., it only modifies λ in a few coordinates in every
iteration, the support size of the final output is also O(n log log n + n

ε ) with the latter initialization and
it is O(n log logN + n

ε ) with uniform initialization. This is much smaller than Carathéodory’s guarantee.
See [Todd, 2016, Chapter 3] for a description of these algorithms.

Further Readings

Much of the presentation here has been referred from [Ball et al., 1997] and [Tkocz, 2018]. These resources
provide a good introduction to the rich area of convex geometry. John’s theorem was presented in John’s
original paper [John, 1948] studying extremum value problems in more generality. A more analytical proof
of the theorem on ellipsoid can be found in [Har-Peled, 2011]. Another good resource is [Matousek, 2013]
which also contains several other application of convex geometric tools in discrete problems. Approximating
convex bodies with ellipsoids is a standard subroutine in several other important algorithms, for example,
the Ellipsoid method and sampling from convex bodies.

The section on Optimal Design has been referred from [Todd, 2016] and [Lattimore and Szepesvári, 2020]
with occasional glances at the original papers [Kiefer and Wolfowitz, 1960, Kiefer, 1974]. A detailed study
of the vast area of optimal design in statistics and the equivalences therein can also be found in [Pukelsheim,
2006]. The computational complexity of approximating John’s ellipsoid is also an active area of study with
recent papers [Cohen et al., 2019].
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