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Learning Theory: Supervised Learning

• Hypothesis class ℋ

• Hypothesis ℎ ∈ ℋ, ℎ: 𝒳 → 𝒴

• True hypothesis ℎ∗ ∈ ℋ

• Dataset 𝐷 = 𝑋𝑖 , 𝑌𝑖 𝑖=1
𝑛 , 𝑋𝑖 ∼  𝒟, iid, 𝑌𝑖 = ℎ∗(𝑋𝑖)

• Learning algorithm ℒ: 𝐷 → ℋ, let its output be ෠ℎ

• Question: How close can we ෠ℎ get to ℎ∗, given 

that number of samples is finite?

Dataset 𝐷

Learning 

Algorithm 

ℒ

Learnt 

hypothesis 
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Why should we study this question?

• Characterizes the relation between complexity of 

the hypothesis class and the number of samples

• Has guided many practical choices in deep learning

• Gives provable guarantees
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Reformulate the question:

Given 𝜀 > 0 and 0 < 𝛿 < 1, if there is a learning algorithm ℒ such that the 

learnt hypothesis ෠ℎ is consistent, that is, ෠ℎ 𝑋𝑖 = 𝑌𝑖 = ℎ∗(𝑋𝑖) for all 𝑖 = 1, … , 𝑛, 

then what should be the minimum value of 𝑛 such that

𝑒𝑟𝑟𝒟
෠ℎ ≔ ℙ𝑋∼𝒟

෠ℎ 𝑋 ≠ ℎ∗ 𝑋 < 𝜀 with prob. at least 1 − 𝛿?
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Learning Theory: Supervised Learning
• Since our learning algorithm ℒ returned a consistent hypothesis ෠ℎ, we have

𝑒𝑟𝑟𝐷
෠ℎ ≔

1

𝑛
෍

𝑖=1

𝑛

1 ෠ℎ 𝑋𝑖 ≠ ℎ∗ 𝑋𝑖 = 0

• What is the probability of this happening?

ℙ 𝑒𝑟𝑟𝐷
෠ℎ = 0 = ℙ ∀ 1 ≤ 𝑖 ≤ 𝑛: ෠ℎ 𝑋𝑖 = ℎ∗ 𝑋𝑖

= ෑ

𝑖=1

𝑛

ℙ ෠ℎ 𝑋𝑖 = ℎ∗ 𝑋𝑖 = ෑ

𝑖=1

𝑛

1 − ℙ𝑋∼𝒟
෠ℎ 𝑋𝑖 ≠ ℎ∗ 𝑋𝑖 = 1 − 𝑒𝑟𝑟𝒟(෠ℎ)

𝑛

• Thus, if 𝑒𝑟𝑟𝒟 ℎ ≥ 𝜀, then, ℙ 𝑒𝑟𝑟𝐷
෠ℎ = 0 ≤ 1 − 𝜀 𝑛 ≤ 𝑒−𝑛𝜀

• Finally, we don’t know what ෠ℎ can be, so we do a worst-case bound via Union Bound:

ℙ ∃ ℎ ∈  ℋ: 𝑒𝑟𝑟𝐷 ℎ = 0 𝑎𝑛𝑑 𝑒𝑟𝑟𝒟 ℎ ≥ 𝜀 ≤ ෍

ℎ∈ℋ

ℙ 𝑒𝑟𝑟𝐷 ℎ = 0 𝑎𝑛𝑑 𝑒𝑟𝑟𝒟 ℎ ≥ 𝜀 ≤ ℋ 𝑒−𝑛𝜀

• Setting this probability to less than 𝛿, we obtain: |ℋ|𝑒−𝑛𝜀 ≤ 𝛿 ⇒ 𝑛 ≥
1

𝜀
log

|ℋ|

𝛿
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Learning Theory: Supervised Learning

𝒏 ≥
𝟏

𝜺
𝐥𝐨𝐠

|𝓗|

𝜹
PAC Learning 1st Result:

• What if the hypothesis class is not finite? The above bound is vacuous.

• Problem step is the Union Bound:

ℙ ∃ ℎ ∈  ℋ: 𝑒𝑟𝑟𝐷 ℎ = 0 𝑎𝑛𝑑 𝑒𝑟𝑟𝒟 ℎ ≥ 𝜀 ≤ ෍

ℎ∈ℋ

ℙ 𝑒𝑟𝑟𝐷 ℎ = 0 𝑎𝑛𝑑 𝑒𝑟𝑟𝒟 ℎ ≥ 𝜀 ≤ ℋ 𝑒−𝑛𝜀

• We need a better characterization of the complexity of ℋ.
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1st Result:VC Dimension

• Labelling: A labelling of a set 𝑆 is just an assignment of 0 or 1 to each of its elements.

• Shattering: Given a set 𝒳 and a hypothesis class ℋ, we say a subset 𝑆 ⊆ 𝒳 is shattered by ℋ if there 

exists a hypothesis ℎ for every labelling of 𝑆 such that ℎ 𝑥 = 𝑦 for all 𝑥 ∈ 𝑆 and 𝑦 is its label.

• VC Dimension 𝑑(ℋ, 𝒳) of a hypothesis class ℋ with respect to set 𝒳 is the size of largest subset of 

𝒳 that can be shattered by ℋ.
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𝒏 ≥
𝟏

𝜺
𝐥𝐨𝐠

|𝓗|
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1st Result:

VC Dimension

Theorem: Let 𝑑 be the VC dimension of a hypothesis class ℋ with respect to set 𝒳. Then, any consistent 

learning algorithm outputs an 𝜀, 𝛿 -PAC hypothesis when the number of training samples 𝑚 satisfies:

𝑚 ≥ 𝐶
1

𝜀
log

1

𝛿
+

𝑑

𝜀
log

1

𝜀

Sauer’s Lemma (Informal): If the VC dimension of of a hypothesis class ℋ with respect to set 𝒳, then, 

using all hypotheses from ℋ, the number of distinct functions 𝑓: 𝒳 → {0,1} is at most 𝑂( 𝒳 𝑑).
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𝑚 ≥ 𝐶
1

𝜀
log

1

𝛿
+

𝑑

𝜀
log

1

𝜀
PAC Learning 

2nd Result:

Some Interesting VC-dimension Results

• Only hypothesis classes with finite VC dimension can generalize, that is, the test and train error rates 

will converge to the same value.

• The VC dimension of any arbitrary feed-forward NN with linear threshold activation (𝑠𝑖𝑔𝑛(𝑤𝑇𝑥)) 

consisting of 𝑁 weights has VC dimension 𝑂(𝑁 log 𝑁).

• Suppose ℋ = {ℎ: ℎ 𝑥 = 𝑤0 + 𝑤1𝜎 𝑎1𝑥 + 𝑤2𝜎 𝑎2𝑥 ,  𝑤0, 𝑤1, 𝑤2, 𝑎1, 𝑎2 ∈ ℝ} where 𝜎 𝑥 =
1

1+𝑒−𝑥 +

𝑐𝑥3𝑒−𝑥3
sin 𝑥 for some small 𝑐. Then, VC dimension of ℋ is ∞!

• If a neural network has 𝑑 parameters and performs up to 𝑡 operations on the input to generate the 

final output value, then that neural network has VC-Dim of 𝑂(𝑡2𝑑2 𝑝𝑜𝑙𝑦𝑙𝑜𝑔(𝑡, 𝑑)) where operations 

are +, −,×,÷, exp ⋅ , <, >, ≤, ≥, =, ≠ .
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What’s New?

• Hanneke, Steve, Kasper Green Larsen, and Nikita Zhivotovskiy. "Revisiting Agnostic PAC 

Learning." arXiv preprint arXiv:2407.19777 (2024). --- this paper proves that the empirical risk 

minimization (ERM), that is, minimizing training error, is not optimal for agnostic learning. Several 

open questions are posed: (i) Are classifiers that are optimal realizable PAC learners also optimal 

agnostic PAC learners? (ii) Computationally efficient agnostic PAC learners

• Brand, Cornelius, Robert Ganian, and Kirill Simonov. "A parameterized theory of PAC 

learning." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 37. No. 6. 2023. --- this 

paper is a first step towards characterizing efficient PAC learnability. In traditional complexity theory, 

the idea of parameterized complexity has resulted into new insights, namely Fixed Parameter 

Tractability (FPT). Looking at PAC learning problems from a similar lens can lead us to deep insights 

into the limits of learnability.

• Zeng, Shiwei, and Jie Shen. "Efficient PAC learning from the crowd with pairwise 

comparisons." International Conference on Machine Learning. PMLR, 2022. --- this paper merges 

social choice with PAC learning to tackle a very important practical setting. Several extensions can 

be made: (i) Can the crowd-workers be modelled better, e.g. more the workload, lesser the accuracy? 

(ii) Consider other query models like different costs for different workers
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Learning Theory: Bandits

• 𝐾 arms, each with distribution 𝒫𝑖 , 𝑖 = 1, … , 𝐾

• Mean reward of an arm 𝑖 is 𝜇𝑖

• Number of rounds of interaction is 𝑇

• If we knew the best arm 𝑖∗, we would just pull it for all rounds

• What is the price of lack of information?

𝑅𝑒𝑔𝑟𝑒𝑡 𝑇 ≔ ෍

𝑡=1

𝑇

𝜇𝑖∗ − ෍

𝑡=1

𝑇

𝜇𝑖𝑡



Learning Theory: Bandits

Regret vs. Maximum Likelihood

1. Naïve way: Sample each arm 𝑇/2𝐾 times and fit a model, that is, for 𝑖 = 1, … , 𝐾, Ƹ𝜇𝑖 =

2𝐾

𝑇
σ𝑡=1

𝑇/2
𝑟𝑡 ⋅ 1{𝑖𝑡 = 𝑖} and then play Ƹ𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖=1,…,𝐾 Ƹ𝜇𝑖 for the remaining 𝑇/2 rounds

2. However, in use cases, often our goal is to maximize the profit, not the MLE

3. Moreover, in real life problems, there is a cost associated with collecting good quality data for MLE, 

which is captured by the regret definition

𝑅𝑒𝑔𝑟𝑒𝑡 𝑇 ≔ ෍

𝑡=1

𝑇

𝜇𝑖∗ − ෍

𝑡=1

𝑇

𝜇𝑖𝑡



Learning Theory: Bandits
Optimism in the Face of Uncertainty: The UCB Algorithm

Algorithm

 1. Input arms 1, … , 𝐾 and the number of rounds 𝑇

 2. Play each arm once and observer reward 𝑟𝑖 for every arm 𝑖. 

 3. Set 𝑇𝑖 = 1 and Ƹ𝜇𝑖 = 𝑟𝑖  ∀ 𝑖 = 1, … , 𝐾 // Set the no. of times an arm has been pulled and its empirical mean reward

 4. For 𝑡 = 𝐾 + 1, … , 𝑇 do:

 5. Play arm 𝑖𝑡 = arg max
𝑖=1,…,𝐾

Ƹ𝜇𝑖 +
𝟒

𝑻𝒊
𝐥𝐨𝐠+ 𝑻

𝑲𝑻𝒊
;   Observe reward 𝑟𝑡.

 6. Update 𝑇𝑖𝑡
= 𝑇𝑖𝑡

+ 1 // Update the number of times arm pulled so far

 7. Update Ƹ𝜇𝑖𝑡
=

1

𝑇𝑖𝑡

σ𝑠=1
𝑡 𝑟𝑠 ⋅ 1{𝑖𝑠 = 𝑖𝑡}     // Update the empirical mean reward of the arm played

Here, log+ 𝑥 = log max{1, 𝑥} .

𝑅𝑒𝑔𝑟𝑒𝑡 𝑇 ≔ ෍

𝑡=1

𝑇

𝜇𝑖∗ − ෍

𝑡=1

𝑇

𝜇𝑖𝑡



Learning Theory: Bandits

Optimism in the Face of Uncertainty: The UCB Algorithm

 Key Idea: Play arm 𝑖𝑡 = arg max
𝑖=1,…,𝐾

Ƹ𝜇𝑖 +
𝟒

𝑻𝒊
𝐥𝐨𝐠+ 𝑻

𝑲𝑻𝒊

Theorem: For the UCB Algorithm, 𝔼[𝑅𝑒𝑔𝑟𝑒𝑡 𝑇 ] ≤ 39 𝐾𝑇 + 𝐾

𝑅𝑒𝑔𝑟𝑒𝑡 𝑇 ≔ ෍

𝑡=1

𝑇

𝜇𝑖∗ − ෍

𝑡=1

𝑇

𝜇𝑖𝑡



Learning Theory: Bandits

Generalizations of the 𝐾-armed Bandit Problem

1. Linear Contextual Bandits:

a. At each round 𝑡 = 1, … , 𝑇, a set of vectors 𝒳𝑡 = {𝑥1,𝑡, 𝑥2,𝑡, … , 𝑥𝐾,𝑡} are presented

b. For a vector 𝑥𝑖,𝑡, the random reward is 𝑟 = 𝑥𝑖,𝑡, 𝜃∗ + 𝜂, where 𝜃∗ is unknown but fixed and 𝜂 is zero-mean 

(Gaussian) noise

c. 𝑅𝑒𝑔𝑟𝑒𝑡 𝑇 ≔ σ𝑡=1
𝑇 max

𝑖=1,…,𝐾
⟨𝑥𝑖,𝑡, 𝜃∗⟩ − σ𝑡=1

𝑇 ⟨𝑥𝑖𝑡,𝑡, 𝜃∗⟩

2. Generalized Linear Contextual Bandits:

a. Arms are same as linear bandits. Parameter 𝜃∗ is unknown but fixed

b. For a vector 𝑥𝑖,𝑡, the random reward is 𝑟 is sampled acc. to the PDF exp −𝑟 𝑥𝑖,𝑡, 𝜃∗ + 𝑏 𝑥𝑖,𝑡, 𝜃∗ + 𝑐(𝑟)

c. 𝑅𝑒𝑔𝑟𝑒𝑡 𝑇 ≔ σ𝑡=1
𝑇 max

𝑖=1,…,𝐾
𝜇( 𝑥𝑖,𝑡, 𝜃∗ ) − σ𝑡=1

𝑇 𝜇( 𝑥𝑖𝑡,𝑡, 𝜃∗ ), where 𝜇 ⟨𝑥𝑖,𝑡, 𝜃∗⟩ = 𝔼 𝑟 𝑥𝑖,𝑡, 𝜃∗ = ሶ𝑏 ⟨𝑥𝑖,𝑡, 𝜃∗⟩



Learning Theory: Bandits

What’s New?

1. Sawarni, Ayush, Nirjhar Das, Gaurav Sinha, and Siddharth Barman. “Generalized Linear Bandits with Limited 

Adaptivity." arXiv preprint arXiv:2404.06831 (2024). (to appear in NeurIPS 2024) --- in this paper we closed a 

major open problem in generalized linear bandit showing optimal regret and efficient computation. However, 

following questions remain (i) An algorithm that does not require the knowledge of a certain instance-dependent 

parameter (ii) An algorithm efficient in the number of arms (important for practice).

2. Lattimore, Tor. "Bandit convex optimisation." arXiv preprint arXiv:2402.06535 (2024). --- this beautiful monograph 

introduces the problem and discusses the state-of-the-art results. There are lots of open questions in this area!

3. Maiti, Arnab, Ross Boczar, Kevin Jamieson, and Lillian Ratliff. "Near-Optimal Pure Exploration in Matrix Games: A 

Generalization of Stochastic Bandits & Dueling Bandits." In International Conference on Artificial Intelligence and 

Statistics, pp. 2602-2610. PMLR, 2024. --- this paper gives the sample complexity of finding pure strategy Nash 

equilibrium in 2-player zero sum games. Recently, a lot of algorithmic game theory problems have been looked at 

as stochastic models where bandit techniques become essential.
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Stay Silent -1, -1 -3, 0

Betray 0, -3 -2, -2
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An Example: Prisoner’s Dilemma

Prisoner B

Prisoner A Stay Silent Betray

Stay Silent -1, -1 -3, 0

Betray 0, -3 -2, -2

Normal Form Games

• Players 𝑁 = 1,2, … , 𝑛

• Each player chooses action 𝑎𝑖 ∈ 𝐴𝑖

• Action profile Ԧ𝑎 = 𝑎1, 𝑎2, … , 𝑎𝑛 ∈ 𝒜 = 𝐴1 × 𝐴2 × ⋯ × 𝐴𝑛

• Ԧ𝑎−𝑖 = (𝑎1, 𝑎2, … , 𝑎𝑖−1, 𝑎𝑖+1, … , 𝑎𝑛)

• Utility function of player 𝑖 ∈ 𝑁 is 𝑢𝑖: 𝒜 → ℝ. Thus, for action profile Ԧ𝑎, player 𝑖 gets 𝑢𝑖( Ԧ𝑎)



AGT & ComSoc: Nash Equilibrium

An Example: Prisoner’s Dilemma

Prisoner B

Prisoner A Stay Silent Betray

Stay Silent -1, -1 -3, 0

Betray 0, -3 -2, -2



AGT & ComSoc: Nash Equilibrium

An Example: Prisoner’s Dilemma

Prisoner B

Prisoner A Stay Silent Betray

Stay Silent -1, -1 -3, 0

Betray 0, -3 -2, -2

Some Strategies

• Pareto Optimal: A strategy is Pareto Optimal if the utility of a player cannot be increased without 

decreasing the utility of some other player. (Silent, Silent) is Pareto Optimal.

• Dominant Strategy: A dominant strategy for player 𝑖 ∈ 𝑁 is a strategy 𝑎𝑖 ∈ 𝐴𝑖 such that 

𝑢𝑖 𝑎𝑖 , Ԧ𝑎−𝑖 ≥ 𝑢𝑖 𝑎𝑖
′, Ԧ𝑎−𝑖  ∀ Ԧ𝑎−𝑖 ∈ 𝐴−𝑖

• Dominant Strategy Equilibrium: If all players play their dominant strategy. (Betray, Betray)

• Nash Equilibrium: An action profile Ԧ𝑎 is a Nash equilibrium if for all 𝑖 ∈ 𝑁 and 𝑎𝑖
′ ∈ 𝐴𝑖,

𝑢𝑖 Ԧ𝑎 ≥ 𝑢𝑖 𝑎𝑖
′, Ԧ𝑎−𝑖

(Betray, Betray) is the NE.
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AGT & ComSoc: Nash Equilibrium

• Pure Strategy: Action chosen deterministically

• Mixed Strategy: Action sampled from a probability distribution over all actions

Theorem (Nash 1951): For all finite normal form games, a mixed strategy equilibrium always exists.

Nash Equilibrium basically says that in such an equilibrium, no individual can benefit by 

deviating. Thus, all individuals continue to act according to the equilibrium action profile.

Hence, finding Nash Equilibrium in competitive games guarantees a player that no one will 

deviate from such an equilibrium.
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Brouwer Fixed Point Theorem: If 𝑓: 𝑃 → 𝑃 is a continuous map over a convex compact domain 𝑃, then there 

exists a point 𝑥 ∈ 𝑃 such that 𝑓 𝑥 = 𝑥.

Proof of Nash: For a player 𝑖 ∈ 𝑁, denote by 𝑝𝑖(𝑎) the probability of playing action 𝑎 ∈ 𝐴𝑖. Denote the 

mixed strategy by 𝑝 ∈ 𝑃.

Define for all players 𝑖 ∈ 𝑁:-   𝛼𝑖,𝑎 𝑝 = max 0, 𝑢𝑖 𝑎, 𝑝−𝑖 − 𝑢𝑖 𝑝  ∀ 𝑎 ∈ 𝐴𝑖

Consider the function 𝑓: 𝑃 → 𝑃, and let 𝑓 𝑝 = 𝑝′ such that,

𝑝𝑖
′ 𝑎 =

𝑝𝑖 𝑎 + 𝛼𝑖,𝑎(𝑝)

1 + σ𝑎′∈𝐴𝑖
𝛼 𝑖,𝑎′ 𝑝

 ∀ 𝑖 ∈ 𝑁 and 𝑎 ∈ 𝐴𝑖

The domain 𝑃 is convex and compact and 𝑓 is continuous. Thus, there exists 𝑝0 ∈ 𝑃 such that 𝑓 𝑝0 = 𝑝0.

Next, we show that 𝑝0 is a Nash Equilibrium.
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Proof of Nash (cont’d):     𝛼𝑖,𝑎 𝑝 = max 0, 𝑢𝑖 𝑎, 𝑝−𝑖 − 𝑢𝑖 𝑝  ∀ 𝑎 ∈ 𝐴𝑖

𝑝𝑖
′ 𝑎 =

𝑝𝑖 𝑎 + 𝛼𝑖,𝑎(𝑝)

1 + σ𝑎′∈𝐴𝑖
𝛼 𝑖,𝑎′ 𝑝

 ∀ 𝑖 ∈ 𝑁 and 𝑎 ∈ 𝐴𝑖

First note that if 𝑝0 is a NE, then 𝑢𝑖 𝑎, 𝑝−𝑖
0 ≤ 𝑢𝑖(𝑝0), hence 𝛼𝑖,𝑎 𝑝0 = 0 which implies 𝑝0 = 𝑝0′.

Now, since σ𝑎∈𝐴𝑖
𝑝𝑖

0 𝑎 ⋅ 𝑢𝑖 𝑎, 𝑝−𝑖
0 = 𝑢𝑖(𝑝0), there exists at least one 𝑎′ ∈ 𝐴𝑖 such that 𝑢𝑖 𝑎′, 𝑝−𝑖

0 ≤ 𝑢𝑖(𝑝0).

For this action, 𝛼𝑖,𝑎′ 𝑝0 = 0, thus, 𝑝𝑖
0′

(𝑎′) =
𝑝𝑖

0(𝑎′)

1+σ𝑏∈𝐴𝑖
𝛼𝑖,𝑏(𝑝0)

 , but since 𝑝0 is a fixed point, 𝑝𝑖
0′

𝑎′ = 𝑝𝑖
0(𝑎′).

Hence, σ𝑏∈𝐴𝑖
𝛼𝑖,𝑏 𝑝0 = 0 and since all 𝛼𝑖,𝑏 𝑝0 ≥ 0, we must have 𝛼𝑖,𝑏 𝑝0 = 0, which means 

𝑢𝑖 𝑏, 𝑝−𝑖
0 − 𝑢𝑖 𝑝0 ≤ 0 ∀ 𝑏 ∈ 𝐴𝑖

Thus 𝑝0 is a NE.
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Braess Paradox:

• Consider 4000 cars:  2000 on S-A-T and 2000 on S-B-T is an NE. Travel time is 65 min.

• New road A-B is added whose travel time is 0. The new NE is 4000 cars via S-A-B-T. Travel 

time is 80 min.
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• Two groups P and Q

• Every p in P has a preference ordering over Q

• Every q in Q has a preference ordering over P

• If p prefers q over their current match and q prefers p over 

their current match, then the matching is unstable.
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• Two groups P and Q

• Every p in P has a preference ordering over Q

• Every q in Q has a preference ordering over P

• If p prefers q over their current match and q prefers p over 

their current match, then the matching is unstable.

• Does stable matching always 

exist?

• If it exists, can it be found in 

poly-time?
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• Yes! To both the questions!

• Seminal work by Gale and Shapley in 1962

• Application in Residence Matching for doctors

• 2012 Nobel Prize in Economics to Shapley!

• Does stable matching always exist?

• If it exists, can it be found in poly-time?
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AGT & ComSoc: Stable Matching

• Yes! To both the questions!

• Seminal work by Gale and Shapley in 1962

• Application in Residence Matching for doctors

• 2012 Nobel Prize in Economics to Shapley!

• Does stable matching always exist?

• If it exists, can it be found in poly-time?

Deferred Acceptance Algorithm

1. Input P, Q and the preference orderings

2. Initially everyone is unmatched

3. All unmatched p in P proposes to their 

highest preferred member in Q

4. If a q in Q receives a proposal from some p 

who is more preferred by q than their current 

engagement, q gets engaged with p

5. Else q rejects their proposals

6. All p who made the proposals but got 

rejected strike out the respective q’s from 

their preference list

7. If no p is rejected, then stop, else go back to 

step 3



AGT & ComSoc: Participatory Budgeting

• n Voters, m Projects, Budget K

• Every project 𝑗 ∈ [𝑚] has cost 𝑐𝑗

• Voters cast vote indicating which projects out of [𝑚] they like: 𝐴𝑖 ⊆ [𝑚]

• Need to output a budget-feasible allocation 𝑊 ⊆ [𝑚], that is, σ𝑗∈𝑊 𝑐𝑗 ≤ 𝐾

• Objective is to make a welfarist allocation



AGT & ComSoc: Participatory Budgeting
Core of the PB

A (budget-feasible) allocation 𝑊 ⊆ [𝑚] is said to be in the core if

• for all 𝑆 ⊆ [𝑛] and 𝑇 ⊆ [𝑚] such that σ𝑗∈𝑇 𝑐𝑗 ≤
𝑆

𝑛
⋅ 𝐾

• there exists a voter 𝑣∗ ∈ 𝑆 such that 𝐴𝑣∗ ∩ 𝑇 < |𝐴𝑣∗ ∩ 𝑊|

Weak Core: Instead of strict inequality in point 2 above, we have less-than-or-equal
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Core of the PB

A (budget-feasible) allocation 𝑊 ⊆ [𝑚] is said to be in the core if

• for all 𝑆 ⊆ [𝑛] and 𝑇 ⊆ [𝑚] such that σ𝑗∈𝑇 𝑐𝑗 ≤
𝑆

𝑛
⋅ 𝐾

• there exists a voter 𝑣∗ ∈ 𝑆 such that 𝐴𝑣∗ ∩ 𝑇 < |𝐴𝑣∗ ∩ 𝑊|

Weak Core: Instead of strict inequality in point 2 above, we have less-than-or-equal

Current State of Knowledge

1. There are instances for no allocation is in the core.

2. No instance is known where the weak core is empty. Does the weak core 

always exist?

3. If the weak core exists, then can it be found in poly-time?

4. Can approximations of the weak core be found in poly-time?

5. In practical datasets, greedy allocation is observed to be in the weak core! 

Explain this phenomenon.
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What’s new?

• Participatory Budgeting & Multi-winner voting --- lots of open questions. 

Take your pick!

• Algorithmic Game Theory --- newer models with much more realistic 

assumptions, computational hardness of known existential results, 

stochastic models for repeated games
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• Introduce a new variable

• Can repeat this process again and again
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Causality: Simpson’s Paradox

• Correlation is not causation

• Causal relationships are more stable

• Paradox arises because our brain is 

hard-wired to find causation

• Should be careful while making 

assumptions about the data

• Does exercise increase cholesterol?

• Introduce a new variable

• Can repeat this process again and again

• Is there any hope?
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Causality: Fisher’s Argument

Does smoking cause cancer?

Way out?

Recall that causal relationships are more stable.

Randomly split people into 2 groups

Make one group smoke, another group not smoke

Observe the rates of cancer in these groups



Causality: Counterfactuals

This is not possible in practice

We need to somehow measure the effect of smoking on chance of cancer based on 

observational data

Ask the question: Had this person been a non-smoker, what is the probability that the person 

would still get cancer, given everything else was same? Area is called individual treatment effect 

estimation

If we are interested in aggregate effects, we study average treatment effect
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Causality

What’s new?

• Lots of open problems in classical causality

• The identification problem: given only the observational distribution, can be identify the 

effect of an intervention?

• Finite sample guarantees on these problems?

• Designing estimators for counterfactuals from observation

• Causal Fairness

• Can we take a causal look into fairness of decision-making?

• Can we test for fairness efficiently if we know the causal structure?



Thank you for your time!
Feel free to reach me: nirjhardas@iisc.ac.in

mailto:nirjhardas@iisc.ac.in
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